A note on subfields of matrix rings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Rings of Finite Rank

The rank rk(R) of a ring R is the supremum of minimal cardinalities of generating sets of I as I ranges over ideals of R. Matson showed that every n ∈ Z+ occurs as the rank of some ring R. Motivated by the result of Cohen and Gilmer that a ring of finite rank has Krull dimension 0 or 1, we give four different constructions of rings of rank n (for all n ∈ Z+). Two constructions use one-dimension...

متن کامل

A Note on Radicals of Seminear-rings

We generalize a few results of [2, 6, 8] for radical classes of rings for radical classes of seminear-rings by using the construction for radical classes of seminear-rings. AMS Mathematics Subject Classification (2000): 16Y60, 16W50

متن کامل

A Note on Rings of Continuous Functions

For a topological space X, and a topological ring A, let C(X,A) be the ring of all continuous functions from X into A under the pointwise multiplication. We show that the theorem "there is a completely regular space Y associated with a given topological space X such that C(Y,R) is isomorphic to C(X,R)" may be extended to a fairly large class of topologlcal rings, and that, in the study of algeb...

متن کامل

A Note on א0-injective Rings

A ring R is called right א0-injective if every right homomorphism from a countably generated right ideal of R to RR can be extended to a homomorphism from RR to RR. In this note, some characterizations of א0-injective rings are given. It is proved that if R is semiperfect, then R is right א0injective if and only if every homomorphism from a countably generated small right ideal of R to RR can b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1977

ISSN: 0024-3795

DOI: 10.1016/0024-3795(77)90013-1